Supplement to: Electron energy partition across interplanetary shocks: III. Analysis

dc.contributor.affiliationSpace Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA.-Goodrich, Katherine A.
dc.contributor.authorGoodrich, Katherine A.
dc.date.accessioned2025-04-29T14:07:17Z
dc.date.issued2020-01-24
dc.date.issued2020-01-24
dc.descriptionQuick Summary: The PDF file herein provides additional example superposed epoch analysis (SEA) plots in addition to reference tables of the upstream values used to normalize the SEA data in this file and those in the paper this supplement supports.  This is a supplement to Part 3 of a three-part study of the electron velocity distribution functions (VDFs) observed near interplanetary (IP) shocks by the Wind spacecraft.  Paper I [Wilson et al., 2019a] introduced the methodology and data products [Wilson et al., 2019c] for fitting the electron VDFs to the sum of three model functions.  Paper II [Wilson et al., 2019b] presents the statistics of the fit parameters produced and provided in the data products from Paper I.  Paper III presents and summarizes the analysis of the fit parameters.  The papers share the title Electron energy partition across interplanetary shocks. Wind Spacecraft: The Wind spacecraft (https://wind.nasa.gov) was launched on November 1, 1994 and currently orbits the first Lagrange point between the Earth and sun.  It holds a suite of instruments from gamma ray detectors to quasi-static magnetic field instruments, Bo.  The instruments used in this study and these datasets are the fluxgate magnetometer (MFI), the radio receivers (WAVES), ion Faraday cups (SWE), and the electron and ion electrostatic analyzers (3DP).  The MFI measures 3-vector Bo at ~11 samples per second (sps); the SWE measures reduced VDFs of the thermal proton and alpha-particle populations from which velocity moments are derived and used herein; WAVES observes electromagnetic radiation from ~4 kHz to >12 MHz which provides an observation of the upper hybrid line (also called the plasma line) used to define the total electron density; and 3DP observes full 4π steradian VDFs of electrons and ions from a few eV to ~30 keV which provide both ion velocity moments and the electron VDFs modeled herein. PDF Supplement Description: Definitions: VDF = velocity distribution function Electron Components/Populations [taken from Wilson et al., 2019a,b] Core (s = ec):  cold, dense population with energies \(E_{ec} \lesssim \text{15 eV}\) Halo (s = eh):  hot, tenuous population with energies \(E_{eh} \gtrsim \text{20 eV}\) Beam/Strahl (s = eb):  anti-sunward propagating, magnetic field-aligned beam (or strahl) with \(E_{eb} \sim \text{a few tens of eV}\) Effective (s = eff):  effective total electron population, i.e., used for approximate moments rather than integrating entire VDF Ion Components/Populations [taken from Wilson et al., 2019a,b] Proton (s = p):  core solar wind proton beam, i.e., main proton population streaming away from sun Alpha-particles (s = \(\alpha\)):  alpha-particle magnetic field-aligned beam \(k_{B}\) = the Boltzmann constant [J K-1] \(\mu_{o}\) = permeability of free space [T m A-1] \(n_{s}\)= number density of species s [cm-3] (s = ec for core, eh for halo, eb for beam/strahl, p for proton, etc.) \(B_{o, j}\)= jth component (GSE coordinate basis) of quasi-static magnetic field vector [nT] \(V_{Ts, j}\) = jth component (relative to Bo) of thermal speed of species s [km/s] \(V_{Ts, j} = \sqrt{ \tfrac{ 2 \ k_{B} \ T_{s, j} }{ m_{s} }}\), where \(T_{s, j}\) is the jth component (relative to Bo) of the temperature of species s [eV] \(V_{os, j}\) = jth component (relative to Bo) of drift speed of species s [km/s] in ion rest frame \(V_{s, j}\) = jth component (GSE coordinate basis) bulk velocity of species s [km/s] in spacecraft frame \(T_{s, tot} = {1 \over 3} (T_{s, \parallel} + 2 \ T_{s, \perp})\), where \(\parallel(\perp)\) is the parallel(perpendicular) component relative to Bo \(P_{s, j} = n_{s} \ k_{B} \ T_{s, j}\) = partial thermal pressure [eV cm-3] of the jth component of species s \(P_{t, j} = \sum_{s} \ P_{s, j}\) = total thermal pressure [eV cm-3] of the jth component summed over all species including ions \(\mathcal{A}_{s} = \left(\tfrac{ T_{\perp} }{ T_{\parallel} } \right)_{s}\) = temperature anisotropy [N/A] of species s \(\xi_{s, j} = \tfrac{1}{2} m_{s} \ n_{s} \ V_{os, j}^{2}\) = ram energy density [eV cm-3] jth component of species s \(\epsilon_{j} = \tfrac{ B_{o}^{2} }{ 2 \ \mu_{o} } + \sum_{s} \left[ P_{s, j} + \xi_{s, j} \right]\) = total energy density [eV cm-3] of the jth component of the system in the plasma bulk flow rest frame \(\zeta_{s, j} = \tfrac{ \xi_{s, j} }{ \epsilon_{j} }\) = ratio of the ram energy density of the jth component of species s to the total energy density [N/A] \(\psi_{s, j} = \tfrac{ P_{s, j} }{ \epsilon_{j} }\) = ratio of the thermal energy density of the jth component of species s to the total energy density [N/A] \(\Pi_{s, j} = \tfrac{ P_{s, j} }{ P_{t, j} }\) = ratio of the partial thermal pressure of the jth component of species s to the total thermal pressure [N/A] \(s_{es}\) = exponent for the symmetric self-similar model VDF of species s \(\kappa_{es}\) = kappa value for the bi-kappa VDF of species s \(p_{es}(q_{es})\) = parallel(perpendicular) exponent for the asymmetric self-similar model VDF of species s \(n_{eff} = \sum_{s} \ n_{s}\) = effective number density of all electron populations \(T_{eff, j} = \tfrac{ \sum_{s} \ n_{s} \ T_{s, j} }{ n_{eff} }\) = effective temperature of the jth component of all electrons populations \(\beta_{s, j} = \tfrac{ 2 \ \mu_{o} \ n_{s} \ k_{B} \ T_{s, j} }{ B_{o}^{2} }\) = plasma beta [N/A] of the jth component of species s   This PDF supplement contains the following SEA plots: \(T_{s, j}\) vs \(\Delta\)t (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(\mathcal{A}_{s}\) vs  \(\Delta\)t (for s = ec, eh, and eb) \(\left( \tfrac{ T_{s} }{ T_{eff} } \right)_{j}\) vs  \(\Delta\)t (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(\psi_{s, j}\) vs  \(\Delta\)t (for s = ec, eh, eb, p, and \(\alpha\) and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(\Pi_{s, j}\) vs  \(\Delta\)t (for s = ec, eh, eb, p, and \(\alpha\) and j = \(\parallel \text{ or } \perp \text{ or tot}\)) The PDF supplement contains tables of upstream median values for each shock used for normalizing the SEA plots, where the parameters listed include: \(T_{s, j}\) (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(n_{s}\) (for s = ec, eh, eb, and eff and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(\tfrac{ n_{s} }{ n_{eff} }\) (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(\beta_{s, j}\) (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\)) \(s_{ec}\text{, }\kappa_{eh}\text{, and }\kappa_{eb}\) \(\mathcal{A}_{s}\) (for s = ec, eh, eb, and eff) \(\left( \tfrac{ T_{s} }{ T_{eff} } \right)_{j}\) (for s = ec, eh, and eb and j = \(\parallel \text{ or } \perp \text{ or tot}\))
dc.identifierhttps://doi.org/10.5281/zenodo.3627284
dc.identifier.urihttps://datakatalogi.helsinki.fi/handle/123456789/6635
dc.rights.licensecc-by-4.0
dc.subjectInterplanetary Shocks
dc.subjectWind Spacecraft
dc.subjectVelocity Distribution Functions
dc.subjectStatistical Analysis
dc.subjectSuperposed Epoch Analysis
dc.titleSupplement to: Electron energy partition across interplanetary shocks: III. Analysis
dc.typedataset

Files

Repositories