L4B - Maximum tree height map for the Brazilian Amazon
No Thumbnail Available
Restricted Availability
Date
2020-09-18, 2020-09-18
Persistent identifier of the Data Catalogue metadata
Creator/contributor
Editor
Journal title
Journal volume
Publisher
Publication Type
dataset
Peer Review Status
Repositories
Access rights
ISBN
ISSN
Description
Maximum tree height distribution estimated by the Random Forest model based on the environmental variables. To explore the influence and importance of the environmental variables for development in tree height, we employed Random Forest modeling, which consists of generating a large number of regression trees, each constructed considering a random data subset. The regression trees are used to identify the best sequence to split the solution space to estimate the output. Were considered 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation (FAPAR; in %); (2) elevation above sea level (Elevation; in m); (3) the component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm (days > 20mm; in days yr-1 ); (7) the number of months with precipitation below 100 mm (months < 100mm; in months yr-1 ) ; (8) lightning frequency (flashes rate); (9) annual precipitation (in mm); (10) potential evapotranspiration (in mm); (11) coefficient of variation of precipitation (precipitation seasonality; in %); (12) amount of precipitation on the wettest month (precip. wettest; in mm); (13) amount of precipitation on the driest month (precip. driest; in mm); (14) mean annual temperature (in °C); (15) standard deviation of temperature (temp. seasonality; in °C); (16) annual maximum temperature (in °C); (17) soil clay content (in %); and (18) soil water content (in %).