Data from: Understanding the dominant controls on litter decomposition

No Thumbnail Available

Restricted Availability

Date

2016-10-29, 2016-10-29

Persistent identifier of the Data Catalogue metadata

Creator/contributor

Editor

Journal title

Journal volume

Publisher

Publication Type

dataset

Peer Review Status

Repositories

Access rights

ISBN

ISSN

Description

Litter decomposition is a biogeochemical process fundamental to element cycling within ecosystems, influencing plant productivity, species composition and carbon storage. Climate has long been considered the primary broad-scale control on litter decomposition rates, yet recent work suggests that plant litter traits may predominate. Both decomposition paradigms, however, rely on inferences from cross-biome litter decomposition studies that analyse site-level means. We re-analyse data from a classical cross-biome study to demonstrate that previous research may falsely inflate the regulatory role of climate on decomposition and mask the influence of unmeasured local-scale factors. Using the re-analysis as a platform, we advocate experimental designs of litter decomposition studies that involve high within-site replication, measurements of regulatory factors and processes at the same local spatial grain, analysis of individual observations and biome-scale gradients. Synthesis. We question the assumption that climate is the predominant regulator of decomposition rates at broad spatial scales. We propose a framework for a new generation of studies focused on factoring local-scale variation into the measurement and analysis of soil processes across broad scales. Such efforts may suggest a revised decomposition paradigm and ultimately improve confidence in the structure, parameter estimates and hence projections of biogeochemical models.

Link to original dataset

Keyword (yso)

Publication Series

Journal title

Location of the original dataset