Data from: Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects

No Thumbnail Available

Restricted Availability

Date

2013-04-02, 2013-04-02

Persistent identifier of the Data Catalogue metadata

Creator/contributor

Editor

Journal title

Journal volume

Publisher

Publication Type

dataset

Peer Review Status

Repositories

Access rights

ISBN

ISSN

Description

The sexual stage of pathogens governs recombination patterns and often also provides means of surviving the off-season. Despite its importance for evolutionary potential and between-season epidemiology, sexual systems have not been carefully investigated for many important pathogens, and what generates variation in successful sexual reproduction of pathogens remains unexplored. We surveyed the sexually produced resting structures (chasmothecia) across 86 natural populations of fungal pathogen Podosphaera plantaginis (Ascomycota) naturally infecting Plantago lanceolata in the Åland archipelago, southwest of Finland. For this pathosystem, these resting structures are a key life-history stage, as more than half of the local pathogen populations go extinct every winter. We uncovered substantial variation in the level of chasmothecia produced among populations, ranging from complete absence to presence on all infected leaves. We found that chasmothecia developed within clonal isolates (single strain cultures). Additionally, these clonal isolates all contained both MAT1-1-1 and MAT1-2-1 genes that characterize mating-types in Ascomycetes. Hence, contrary to expectations, we conclude that this species is capable of haploid selfing. In controlled inoculations we discovered that pathogen genotypes varied in their tendency to produce chasmothecia. Production of chasmothecia was also affected by ambient temperature (E), and by the interaction between temperature and pathogen genotype (G × E). These G, E and G × E effects found both at a European scale, as well as within Åland, may partly explain the high variability observed among populations in chasmothecia levels. Consequently, they may be key drivers of the evolutionary potential and epidemiology of this highly dynamic pathosystem.

Link to original dataset

Keyword (yso)

Publication Series

Journal title

Location of the original dataset